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2. Abstract

The main goal of this Thesis is to study Neimark-Sacker bifurcation of higher
order rational difference equations.
We study the third order equations

Xpa1 =
+1 A+ X,

with positive parameters and non-negative initial conditions. Moreover, we
give details of dynamic behavior and direction of Neimark-Sacker bifurcation.
Also, we study the fourth order equation

X,q =
T AL X,

with positive parameters and non-negative initial conditions. We give details
of dynamic behavior and direction of Neimark-Sacker bifurcation.

Finally we give some numerical results that show the solution, the dynamical
behavior of each equation, and the phase portrait at the bifurcation value.



3. Introduction

In this chapter we mainly introduce the normal form theorem and proof men-
tioned in Kuznetsov’s book, [1].

In practical applications that involve difference equations it very often hap-
pens that the difference equation contains parameters and the value of these
parameters are often only known approximately. In particular they are gen-
erally determined by measurements which are not exact. For that reason it is
important to study the behavior of solutions and examine their dependence
on the parameters. This study leads to the area referred to as bifurcation
theory. The term bifurcation refers to the phenomenon of a system exhibit-
ing new dynamical behavior as the parameter is varied. It can happen that
a slight variation in a parameter can have significant impact on the solu-
tion. Bifurcation theory is a very deep and complicated area involving lots
of current research.

Definition 3.0.1. [5] A point X* = (z*, z*,---2*) is said to be a fixed point
of the map

Tni1 = f(Tn, Tpoy, - -x) if fla*, 2%, J2*) = X*

Definition 3.0.2. [7] Consider the non-linear difference equation

Xpi1 = AX, + F(X,,)

Where A is k x k matrix, X,, € R* for every n > 0, F € C[R*, RF].
Then the following statements hold,

1. If all the eigenvalues of A lie in the open unit disk |A| < 1, then the
fixed point and consequently the previous equation is asymptotically
stable

2. If at least one of the eigenvalues of A has absolute value greater than
one, then the fixed point and consequently the previous equation is
unstable
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3. If all the eigenvalues of A lie in the closed unit disk |A| < 1, and at
least one eigenvalue of A has absolute value equal one, then the stability
can’t be determined.

As the parameters vary, the phase portrait also varies. There are two pos-
sibilities: either the system remains topologically equivalent to the original
one, or its topology changes.

Definition 3.0.3. [1] The appearance of topologically non equivalent phase
portrait under variation of parameter is called bifurcation.

There are several types of bifurcation, the saddle-node bifurcation, period-
doubling bifurcation, Neimark-Sacker bifurcation.

Definition 3.0.4. [1] The bifurcation associated with the appearance of an
eigenvalue p = 1 is called fold or (tangent) bifurcation.

This bifurcation is also referred to as a limit point, saddle-node bifurca-
tion, turning point, among others.

Definition 3.0.5. [1] The bifurcation associated with the appearance of an
eigenvalue u = —1 is called flip or (period-doubling) bifurcation.

Definition 3.0.6. [1] The bifurcation corresponding to the presence of two
eigenvalues \; o = e (0 < 6y < 7, is called a Neimark-Sacker (or torus)
bifurcation.

The fold and flip bifurcations are possible if n > 1, but for the Neimark-
Sacker bifurcation we need n > 2.

Example 3.0.1. { The fold bifurcation}
Consider the second order difference equation,

6Xn + anl

Xy = 22l
T A1+ X,

(3.0.1)

with a positive parameter §, and a unique fixed point X* = (0, 0).

U\ _ [ Xa
()= (30 )
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ntl BH1+W,
Then we have =
Wn—H Un

The Jacobian matrix represents the previous matrix is

B 1
J = B+1  p+1
(7o)

The characteristic equation is P(A\) = |J — AI| = 0.

P(A) =M — g5A - 55

Solving A2 — -2\ — 1= = 0 we get,

G177 T B+l
A:MM:{ 1
208+ 1) )

So there exists an eigenvalue A = 1. Note that Ay < 1 for every [3.

Example 3.0.2. {Flip bifurcation}
Consider the following logistic map f,(X) = aX (1 — X).

1
This map has a unique fixed point X* =1 — —
o

The eigenvalue is p = f(a, X*) = —aX*+ (1l — X*) =2 — a.
|2 —a] < 1sofor 1 < a < 3 the positive fixed point is stable.
For « = 3 then y = —1, and for a > 3 the fixed point X* becomes un-

stable.
Notice the existence of period two at a = 3.
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Bifurcation diagram of the logistic map
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Fig. 3.1: bifurcation diagram of the logistic map

We will study in detail Neimark-Sacker bifurcation.

Neimark-Sacker bifurcation is the birth of a closed invariant curve from a
fixed point in dynamical systems with discrete time (iterated maps), when
the fixed point changes stability via a pair of complex eigenvalues with unit
modulus. The bifurcation can be supercritical or subcritical, resulting in
a stable or unstable (within an invariant two-dimensional manifold) closed
invariant curve, respectively. When it happens in the Poincarée map of a
limit cycle, the bifurcation generates an invariant two-dimensional torus in
the corresponding ODE.

The Neimark-Sacker bifurcation (NSB) is the equivalent of the Hopf bifur-
cation for maps. For instance, in the case of a supercritical NSB, a stable
focus loses its stability as a parameter is varied with the consequent birth of
a stable cycle or quasi-cycle - we’ll refer to either of these as a closed invari-
ant curve. In the case of a subcritical NSB, a stable focus enclosed by an
unstable closed curve loses its stability with the consequent disappearance of
the closed invariant curve as a parameter is varied.
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3.1  The normal form of the Neimark-Sacker bifurcation

Consider the following two-dimensional discrete-time system depending on
one parameter
1 cosf —sind 1
(xg ) —>(1+a)< sinf cos6 ) (xQ >+

9 oy [ cosf —siné a —b 1
(x1+$2)<sin9 cosf )(b a ><x2>
where « is the parameter, § = 6(«), a = a(a) and b = b(a) are smooth

functions, and 0 < 6(0) < 7, a(0) # 0.
This system has the fixed point x1 = x5 = 0 for all a with Jacobian matrix

cosf) —sind
A_(1+a)<sin9 COSQ)

The matrix has eigenvalues A\ o = (1+a)e*®, which makes the previous map
invertible near the origin for all small |a|. As can be seen, the fixed point
at the origin is non-hyperbolic at &« = 0 due to a complex-conjugate pair of
the eigenvalues on the unit circle. To analyze the corresponding bifurcation,
introduce the complex variable

z=x +iry, Z=x1—iTy, |2|°=2Z=2a%+13

and set d = a + b, the equation for z leads
2= e2(1 4 a+d|z|?) = pz + cz|z?

where g = p(a) = (14 @)@ and ¢ = c¢(a) = €%@d(a) are complex
functions of the parameter o. Using the representation z = pe’?, we obtain
for p = |z|

p = pll+a+d(a)p’]

Since

2a(a) 5 | |d(a))’ ) 2
_|_

1 2| = (1 1
1+ a+d(a)p?] = ( —|—a)< +1+ap (1t a)

=1+ a+a(a)p®+ 0(p®).
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We obtain the following polar form

{ p = p(1+a+a(a)p® + p*Ra(p))
© = o+ 0(a) + p*Qalp)

For functions R and (), which are smooth functions of (p, ). Bifurcations of
the system’s phase portrait as a passes through zero can be analyzed using
the latter form, since the mapping for p is independent of p. The equation

p— p(1+a+a(a)p®+ p*Ru(p))

defines a one-dimensional dynamical system that has the fixed point p = 0
for all values of a. The point is linearly stable if « < 0; for &« > 0 the
point becomes linearly unstable. The stability of the fixed point at @ = 0
is determined by the sign of the coefficient a(0). Suppose that a(0) < 0;
then the origin is (nonlinearly) stable at & = 0. Moreover the p-map has an
additional stable fixed point

—

polar) = a(a) + O(a)

for a > 0. The ¢ map describes a rotation by an angle depending on p and
a; it is approximately equal to #(«). Thus, by superposition of the previous
mappings, we obtain the bifurcation diagram for the original two-dimensional
System .

The system always has a fixed point at the origin. This point is stable for
a < 0 and unstable for a > 0. The invariant curves of the system near the
origin look like the orbits near the stable focus of a continuous-time system
for « < 0 and like orbits near the unstable focus for a > 0. At the critical
parameter value a = 0 the point is nonlinearly stable. The fixed point is
surrounded for a > 0 by an isolated closed invariant curve that is unique
and stable. The curve is a circle of radius po(«). All orbits starting outside
or inside the closed invariant curve, except at the origin, tend to the curve
under iterations. This is a Neimark-Sacker bifurcation. This bifurcation
can also be presented in (x1, s, a)-space. The appearing family of closed
invariant curves, parameterized by «, forms a paraboloid surface.

The case a(0) > 0 can be analyzed in the same way. The system undergoes
the Neimark-Sacker bifurcation at a = 0. Contrary to the considered case,
there is an unstable closed invariant curve that disappears when « crosses
zero from negative to positive values.
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3.2 Generic Neimark-Sacker bifurcation

We now shall prove that any generic two-dimensional system undergoing a
Neimark-Sacker bifurcation can be transformed into the form

1 cosf —sind 1
<x2>_>(1+a)<sin9 cosf ><x2>+

9 oy [ cosf —sin6 a —b 1
<x1+x2)<sin9 cos )(b a ><x2>
Consider a system

r— f(r,a), = (r1,72)" €R* acR.

with a smooth function f, which has at o = 0 the fixed point x = 0 with
simple eigenvalues \; o = e¥% 0 < §y < 7. By the Implicit Function Theo-
rem, the system has a unique fixed point zo(«) in some neighborhood of the
origin for all sufficiently small ||, since A = 1 is not an eigenvalue of the
Jacobian matrix. We can perform a parameter-dependent coordinate shift,
placing this fixed point at the origin. Therefore, we may assume without loss
of generality that x = 0 is the fixed point of the system for |a| sufficiently
small. Thus, the system can be written as

r— Ala)r + F(z, )

where F' is a smooth vector function whose components F}, have Taylor
expansions in x starting with at least quadratic terms

F(z,a) = $B(z,z) + ¢C(x,z,2) + -+, F(0,a) = 0 for all sufficiently small
|a|. The Jacobian matrix A(«) has two eigenvalues

A2(a) = r(&)eiiw(a)

where 7(0) = 1,0(0) = 6. Thus, r(«) = 1 + () for some smooth function
B(a),B(0) = 0. Suppose that 5(0) # 0. Then, we can use [ as a new
parameter and express the multipliers in terms of 5 : A\ (5) = A(B), A2(B) =
A(B), where

A(B) = (14 B)e

with a smooth function 6(/3) such that 6(0) = 6.
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Lemma 3.2.1. [1] The map

2 At %f togneE %z‘z +O(2%))

Where A = \(B) = (1 + B)e, gij = ¢;;(B), can be transformed by an invert-
ible parameter-dependent change of complex coordinate

h h
z=w+ %wQ + hywi + %u‘ﬂ

for all sufficiently small |B|, into a map without quadratic terms:
w — Aw + O(Jw?|)

provided that ‘ A
6190 # 1 61390 7& 1
Proof. The inverse change of variables is given by

h h
w=z— %22 — hy12Z2 — %22 +O(|2%))

Therefore, in the new coordinate w, the map takes the form

1
W= \w + 5(920 + (A — >\2)h20)w2

Hgn + (= N wi

1 _
+§(902 + (A = A?)hge) 0

+O([w?|)
Thus, by setting
_ Y2 _ 9u _ Y02
h20 - mahll - I)\|27_)\ah02 - 5\2 _ )\

we kill all the quadratic terms. These substitutions are valid if the denomi-
nators are nonzero for all sufficiently small || including 5 = 0. Indeed, this
is the case, since

A0)2 = A(0) = (e — 1) #£0

INO0)[2 = A0) =1 —¢ £0
A(0)2 — \(0) = e (e7™% — 1) £0

due to our restrictions on 6. ]
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Assuming that we have removed all quadratic terms, let us try to elimi-
nate the cubic terms as well.

Lemma 3.2.2. [1] The map

poAe+ B0 I 2g T2, | I8 L (|4
6 2 2 6

Where A = A(B) = (1+8)e0, ;i = gi;(8) can be transformed by an invertible

parameter-dependent change of coordinates

h h h

for all sufficiently small |\ , into a map with only one cubic term:

h0373
w + 6 w

w — Aw + cyw?w + O(|wl]?).

provided that
627:00 #1 €4i90 #1

Proof. The inverse transformation is

h h h h
w=z— %23 — %222 - 712222 - %353 +O(|z"

Therefore,

W= Aw + 6 (930 + (A — /\3)h30) w* + 2 (921 +(A - >“)‘|2)h21) W'

1 - 1 _
15 (9124 A= AN hia) wit? + & (gos + (A = X)hos) @0® + Ol )
Thus, by setting

hao = 930 By = 9}1 05 = = go3
A3 — )\ |/\|2/\—>\’ A3 — A

We can annihilate all cubic terms in the resulting map except the w?w-term,
which must be treated separately. The substitutions are valid since all the
involved denominators are nonzero for all sufficiently small |3| due to the
assumptions concerning 6.

One can also try to eliminate the w?w-term by formally setting

g21

hoy = —22
LA
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This is possible for small § # 0, but the denominator vanishes at 5 = 0 for all
0. Thus, no extra conditions on 6y would help. To obtain a transformation
that is smoothly dependent on 3, set ho; = 0, that results in

o =2
T2
[
Lemma 3.2.3. [1/(Normal form for the Neimark-Sacker bifurcation)
The map
920 go2 o | 930 3 Y21 _o_

z—))\z+722~|—911z5+7z +?z + 5 z+%222+%23+0(|z|4)

Where .
A=A(B) = (1+B)e, 9i; = 9i5(8), 0 =6

et £ 1 | for k = 1,2,3,4. can be transformed by an invertible parameter
dependent change of complex coordinate, which is smoothly dependent on the
parameter,

hoa o  hao 3 ha hia _ hos _3

_ hao _ 2 2
z—w+7w +h11ww+7w +?w +7w w+7w w+?w

for all sufficiently small |B|, into a map with only the resonant cubic term:
w = w\ + cow?w + O(|w|*)
where ¢; = c1(B)

The truncated superposition of the transformations defined in the two
previous lemmas gives the required coordinate change. First, annihilate all
the quadratic terms. This will also change the coefficients of the cubic terms.
The coefficient of w?w will be %gil, say, instead of %ggl. Then, eliminate
all the cubic terms except the resonant one. The coefficient of this term
remains %gEl. Thus, all we need to compute to get the coefficient of ¢;
in terms of the given equation is a new coefficient %gél of the w?w- term
after the quadratic transformation. The computations result in the following
expression for ¢;(«):

_ 92091 (A —3+2))  |gui|? |go2|? 921

TN - 1-x 2N 2
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which gives, for the critical value of ¢;

_ 920(0)g11(0) (Ao —3+2X\) |g11(0_)|2 1902(0)]* | 921(0)
2(A5 = o) (Ao — 1) L=X  2(AF = o) 2

C1 (O)

Where )\, = €'
Theorem 3.2.4. [1/Suppose a two-dimensional discrete-time system
r— f(r.a). z€R?} a€cR

with smooth f has for all sufficiently small |a|, the fized point x = 0 with

multipliers 4
A2(a) = r(a)er#(@)

Where r(0) = 0, ¢(0) = 6
Let the following conditions be satisfied:

r(0) #0

e £ 1, for k=1,2,34

Then, there are smooth invertible coordinate and parameter changes trans-

, . Y cosO(B) —sinf(5) y
forming the system into ( y; ) — (1+7) ( sin6(B)  cos0() ) ( y; )—l—

o oy [ cosO(B) —sinb(B) | [ a(B) —b(3) ) [ 4
ot i) (o) i ) (55 ) (1n ) +o0
with 6(0) = Oy and a(0) = Re(e®®c,(0)), where c1(0) is given by

~ 920(0)g11(0) (Mo — 3+ 2X0) | [gui(O)* | lgo2(0)]* | g21(0)
ei0) = 2002 — Xo)(No — 1) 1—Xo - 2(A3 — o) T

Proof. The only thing left to verify is the formula for a(0). Indeed, by previ-
ous Lemmas, the system can be transformed to the complex Poincaré normal
form,

w — A(B)w + e (B)w|w]* + O(|w|*)
For A(B) = (1 + )e®).

This map can be written as

w — P (14 8+ d(B)|w|?)w + O(|jw|*)
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Where d() = a(f) + ib(S) for some real functions a(53), b(5)

a(B) = Re(d(B)) = Re(e " Pey(8))

Thus,
a(0) = Re(e ¢ (0))
[

In Neimark Sacker bifurcation the Jacobian matrix has simple pairs of
complex eigenvalues on the unit circle. A\, = e 0 < §; < 7 and these
are the only eigenvalues with |\| = 1.

Let ¢ € C" be a complex eigenvector correspond to \; = €

907
Ag = eiog, Af = e~

Introduce also the adjoint eigenvector p € C™ having the properties
ATp = e~y AT = eifop

and satisfying the normalization property

<p,qg>=1

Where < p,q >= >""" | p;q; is the standard scaler product in C". The critical
real eigenspace 1 corresponding to A 2 is two-dimensional and is spanned by
{Re(q),Im(q)}. The real eigenspace T*" corresponding to all eigenvalues of
A other than Ay 5 is (n — 2)-dimensional. y € T*" if and only if < p,y >= 0.
Notice that y € R™ is real, while p € C™ is complex. Therefore, the condition
< p,y >= 0 implies two real constraints on y. Decompose x € R" as

T=zq+20+y

where z € C!, and 2q + zq € T¢, y € T%*. The complex variable z is a
coordinate on 7T°. We have

Z2=<p,xr>
y=a—<p,r>q-<p,xT>q

In these coordinates, the map & = Az + F(z),z € R" takes the form

Z=e%2t <p, Flzq+2q+7y) >
y=Ay+ F(zq+2q+y)— <p, Flzq+2q+y) >q— <p, F(zq+ 24+ y) > q
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This system is (n+2) dimensional, but we have to remember the two real
constraints imposed on y. The system can be written in a form

Z = ey + %G2022 + G112z + %GOQEQ + %G21225+ < Glo,y >z+ < Gol, Yy >z
’Z/v = J’y —+ %HQ()ZQ —+ HHZZ -+ %HOQEQ -+ %H21225

where Gag, G11, Goa, G21 € C, Go1, Gro, Hi; € C*; and the scalar product
in C" is used.
The complex numbers and vectors can be computed by the formulas
{ Goo =< p, B(q,q) >,G11 =< p, B(q,q) >,
Goz =< p, B(q,q) >,Ga1 =< p,C(q,q,q) >

Hay = B(q,9)— <p,B(¢:9) > ¢— <p,B(¢;9) > q
H11 = B(q,g)— < p,B(Q;Q) > q— <p7B(Q7q_) > q_

{ < G107y>:<paB(Q7y) >7<G01ay>:<po(gay) >

The center manifold in the previous system has the representation

1 1
Y = V(Z, 2) = 511)2022 + wnzé + 51110222

where < ¢, w;; >= 0. The vectors w;; € C" can be found from the linear
equations

Wy = (e¥ 13 — J) " Hyg

wyy = (I3 — J>_1H11

wog = (672 I3 — J)"1 Hoy

These equations have unique solutions. The matrix (I — A) is invertible
because 1 is not an eigenvalue of A (e £ 1) if €3 £ 1, the matrices
(e[ — A) are also invertible in C™ because €% are not eigenvalues of A.
Thus, generically, the restricted map can be written as

. 1 1
z = 61905 + §G2022 -+ G’HZZ + §G0222

1 .
+§(G21 +2<p,B(qg,(I —J)'Hyy) >+ < p, B(q, (¥ 1 — J) ' Hy) >)2°%
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In this generic situation, substituting the value of G'(ij) and Hij) and taking
into account the identities

-1 1 26, -1 e "
(L —J) 1= 1 "o (eI —J) 1= Gige — 11
and A
1= L 2i 1= e o _
(=) q:mq, (e = J) q:mq
S b Ly oL 51 o
2= €724 50202+ guzz + 5gnZ + g E
Where

G20 =< p, B(q,q) >, g =< p, B(q,q) >, go2 =< p,B(q,q) >

go1 =< p, C(qv q, g) >+2 < b, B q, (I - J)ilB(Q7 67)) >+
< p, B(q, (1 — J)"*B(q,q)) > +--- in the absence of strong resonances,
Le.

ekt £ 1 |k =1,23,4,
So .

Z = e"2(1 4+ d(0))]2?|

where the real number a(0) = Re(d(0)), that determines the direction of
bifurcation of a closed invariant curve, can be computed by formula

—i0p 1—-292 100\ ,—210g
e g21) Re (( e )‘e
2 2(1 — eifo)

1 1
Re(d(0)) = Re( g20911) — §|911|2 - 1|902|2
This compact formula allows us to verify the non-degeneracy of the nonlinear
terms at a non-resonant Neimark-Sacker bifurcation of n-dimensional maps
with n > 2. Note that all the computations can be performed in the original
basis.

Example 3.2.1. (Neimark-Sacker bifurcation in the delayed logistic equation)
Consider the following recurrence equation

Upir = 1Un(1 — Up_y) (3.2.1)

This is a simple population dynamics model, where U,, stands for the density
of a population at time n and r is the growth rate. It is assumed that the
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growth is determined not only by the current population density but also by
its density in the past.

Solving X* = rX*(1 — X*)

then X* = (0,0) or (1 = X*)=1,s0 X* =(1—-1,1-1)

U, [ Va .
Let ( U, ) = ( W, ) ,then equation (3.2.1) turned to

Vn—‘,—l - Tvn(]. — Wn)
Wn+1 N Vn

The Jacobian matrix that represents this matrix at the positive fixed point is
[ r(1-X") —rX*

()

. ( A=)~} )

1 1—7r
=1

The characteristic equation of the Jacobian matrix is

11—\ 1—7r
| SN
So
P(/\):/\Q—/\—(l—r)
The roots are
WL L+4(1-7) 146 —4r
12 = =

2 2

For r > % there is two complex conjugate roots.

(1+M)(1—M):1—(5—4r) _A(=1+7)
4 4 4

A1 Ao] =

So at r = 2 the positive fixed point loses stability and we have Neimark-
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Sacker bifurcation. At r = 2

So

Also .
ekl L1 for k=1,234

The eigenvectors of the Jacobian matrix are

6o

Jqg=¢"%q, J'p=ecp

To find q.

Letqulthenl’T‘@ql—lzo,

14++/3i
— 2

Solving JTP = e~ p
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Let P, =1, then Y3 P, 41 =0

—1+/3i
2

1
Normalize P,q. To achieve the normalization < P,q >= 1.

_ —1-/3i 1+/3i
= P.g= 2 ] 2 — 3—V3i

V3i

3
1_\/3i>
27 6

System (1) can be written as

P =

Yo = JY, + G(Y,) (3.2.2)

where G(Y) = 1B(Y,Y) + 1C(Y,Y,Y)  and yn:< Vn )

(2 > and C(Y,Y,Y) = ( Cl(Y’OY’ Y) >

where P2y Yi(6)
92,06, |e=o(Yr)

Bi(*%?/) = Z

7,k=1

and n oy,
Clrn) = 3 S blcoaea)

7.kl

Bi(¢,m) = —r(Gima) — r(Cam)

Bi(q,9) = —2(q1q2) — 2(q2n) = —2(1 Vi + L +2\/§i = —2(1+/3i)

2 )=-
b= (215 )

1+\/§2’+1—\/§i

=2
2 > )

Bi1(q,q) = —2(q1q2 + ¢2q1) = —2(
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Bi(q,q) = —2(1q2 + ©2q1) = —2(1 _2\/§i - L _2\/§i) = —2(1 —/3i)
B(3.3) = ( ALV )
c¢,n,§) =0
So
= - i i
920 =< p, B(q,q) >= < lﬁ@ ) ( 2(13\/3) ) =—-2+ 2?

B =V3i ) 2v/3i
g =< p,B(q,q) >= ( ;—1—3‘/(35"')'( 0 >:3

_ i >.<_%1—v@)>:2u+V@S

ey B 0.0 e 3 .

Go2 =< p, (q>Q)> <;+\/6§,Z 0 3
gn =<p,C(q,q,4 >=0

The critical real part

677:00921 (1 _ 2€i90)672’i90
a(0) —Re( 5 > —Re< 201 = o)

1 o 1 2
920911> B \911| 1 ’goz|

(1—2 + Y2 (F — LO(—2+ 2828\ 1, 1,
0— Re . , —§|911| —11902|
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g [20+ V31— ¥\
B (1—/3i)

Wl o
W =~

R 2(1 4 v/3i)(1 — Y2)(1 + v/30) _2
(1 —/3i)(1 + V/3i)

a(0)=-2<0

Therefore, a unique and stable closed invariant curve bifurcates from the
nontrivial fixed point for r > 2.

0.58
054+ /
052} ’\

0.5

x(n+1)

0.48

0.44

042 Il Il Il Il Il Il Il J
0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58

x(}1)

Fig. 3.2: Phase portrait at bifurcation value
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In this thesis, we investigate the third order rational difference equation

BXn + anQ

Xpa1 =
+1 A+ X,

with positive parameters (3, A and non-negative initial conditions X, X _1, X _».
Also we investigate the fourth order rational equation

Xpa1 =
+1 A+ X,

with positive parameters 3, A and non-negative initial conditions Xg, X_1, X_o, X _3.



4. Third order rational difference equation

4.1 Introduction

Z.He and J.Qiu [9] studied the existence and direction of Neimark Sacker

bifurcation of
5Xn + aXn—2

Xy =
1 1+X, .

(4.1.1)

and derived the following results:

Theorem 4.1.1. Assume o > 1 then the characteristic equation (4.1) has two
complex roots that lie on the unit circle and another root lies inside it when
b =[5 = @~ oreover the non-resonance and transversality conditions

a+1 "’
hold.

Theorem 4.1.2. Assume o« > 1 if a(8*) < 0 ( respectively > 0) then the
Neimark Sacker bifurcation is supercritical (respectively subcritical) and unique
closed invariant curve bifurcating from the positive fixzed point is asymptoti-
cally stable (respectively unstable).

4.2  Dynamics and Bifurcation of the third order equation

Consider the difference equation

BXn + Xn—2

X,y =
T AL X,

(4.2.1)
with positive parameters 3, A and non-negative initial conditions Xy, X_1, X _».
We solve f(x*,z* 2*) = x* to find its fixed points.

BX* + X*
xXr=5 T2
A+ X+
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XA+X")=(p+1)X"
XA+X"—(+1)=0
So we have two fixed points,

X*=(0,0,0), X*=(B—-A+1,8—A+1,8-A+1)

when 8+ 1 > A we have a unique positive fixed point. Therefor, assume

that +1> A
Un Xy
Let | V., | =] X,-1 [, then (4.2.1) is turned to
vvh )(n—2
s\ (
Vo | = ‘O, (4.2.2)
I/VnJrl v%

Theorem 4.2.1. The positive fixed point is stable if 5 > [*, and unstable if
B < B*, where * = ;—2‘

Proof. The Jacobian matrix of (4.2.2) is

OUp+1 OUp+1 OUp 41
Uy, oV, oW,

OVint1 OVpt1 OVint1

J = oUnp, OVy oWy,
OWH_H 8Wn+1 8Wn+l
oUy, OV, oW,
Which equals
A4V, (A+Vp)?2 A4V,
1 0 0
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At the positive fixed point

B —(B+1)(B-A+1) 1
A+(B—A+1) (A+(B-A+1))2  A+(B-A+D)
J— 1 0 0
0 1 0
B =B+H(B-A+D) 1
B+1 (B+1)2 B+1
J— 1 0 0
0 1 0
B —=(B=A+1) 1
B+1 B+1 B+1
J— 1 0 0
0 1 0

Let P(A) be the characteristic polynomial of the Jacobian matrix J.

P(X) = (~1)J = ]|

B%_A ﬁﬁﬁ”a%
Py =| 1 -0 |,
0 1 =)
—(B-A+1 1
SO
P =Ny e P ALy ]

p+1 pf+1 f+1



4. Third order rational difference equation 31

Let p(A\) = (—1)P(A) then

_LZ b—A+1 B 1
5+1)‘ b+1 A B+1

p(A) =X’ (4.2.4)

To study the stability of X* we use Jury condition.

Jury’s condition is an algebraic test, similar in form to the Routh - Hurwitz
approach, that determines whether the roots of a polynomial lie within the
unit circle. The test consists of two parts

1. simple test for necessary conditions
2. test for sufficient conditions
Theorem 4.2.2. For a polynomial of the form.:
f(2) = anz™ 4+ an_12" 4 -+ arz + ag

The necessary conditions for stability are:
f(1)>0and (-1)"f(—=1) >0

The sufficient conditions for stability are obtained by forming a table as fol-
lows:

row 2° 2! 22 s 2nk e 21 2"
1 Qo ay a2 T An—k T Gp—1 Qp,
2 Up  Ap-1  Ap_2 e ag E a ag
3 bo by by bk b1

4 bnfl ban bn73 bk bD

5 Co C1 Co Cn—2

6

2n—5 Py P P Ps
2n—4 Pz P, P By
2n—=3 @ ¢ ¢

where by, = Z: GZ:C , = bs: b”[_);_k
The sufficient conditions for stability are given by

|ao| < an,  |bo| > |bp-1], leo| > |cn-al, -+ |qo| > |2
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Apply the necessary conditions,

3 B—A+1 1

B+1 B+1 B+1

B+l oA+l B-Add
g+1 f+1  B+1

B B-A+1 1>
B+1 g+1 g+1

p(l)=1-

p(l)=1 >0

(1%(-1) = (1) (1~

3 (., B+l B-A+1
) = () (1= 5 - P
(C1Pp(-1) = (1) (—2 - ﬁfl“) =24 I AL

The sufficient conditions are, |ag| < ag and |bg| > |bs|

Whereaozﬁ%rll, alzﬁgﬁ’l, aQZB_—fl, az =1
bo=| " ®land by=|% @
0 as Qg 2 as a2
lag| < ag since
[ P
B+1" B+1
-1
by = B+1 }1 — 1 _
Logq | (B+1)2
butm—1<0,so
b =1 1 (B+1)-1  p*428
' B+12 (B+1?  (B+1)
-1  B-=A+1
b | BT A |8 _B-A+l
1 5 (B+1)2 B+1

B—(B-A+1)(B+1) p-p*—28—1+A8+A -p*—B—1+A8+A
(8 +1)? B (B+1)2 - (8 +1)?

We have two cases. If

by =
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—B2-BALABHA - () then Iby| = —B°—B-1+AB+A

(B+1)2
We must have |bg| > |bs| so

(B+1)2

/¢+26>—ﬂ?—6—1+A6+A
(B+1)? (B+1)?
282 4+38—AB—A+1
(B+1)2
28+ 1)(B+1)—A(B+1)
(B+1)
(28+1)— A
(B+1)

The last inequality is satisfied since § — A+ 1 > 0.
The second case is when

>0

>0

> 0

B —B—1+AB+ A
(B+1)?

<0

So
FP+p+1-A-A
(B+1)2

|ba| =

To have |bg| > |bs|

62+m3>61+6+1—Aﬁ—A
(8+1) (B+1)

B+AB+A-1
(B+1)?

BA+1)+A—-1
(8+1)°

1-A

S>17a

>0

>0

]

Theorem 4.2.3. The difference equation X,i1 = Z22tX0=2 p4s no solution of

. A+Xn—1
period 2.
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Proof. By contradiction suppose it has period 2-solution say ---p,q,p,q, - -
where p # ¢q. Then p = 5 ‘Hq so we have

q(6+1) = pA+p? (4.2.5)

And g = BPJF” so we have

p(B+1)=qA+¢’ (4.2.6)
Solving (4.2.5) and (4.2.6) we get

(P—q)(A+p+q+p5+1)=0

but(A+p+qg+p5+1) > 0so (p—q) = 0 which implies p = ¢q. A contradiction.
]

4.3 Direction and stability of Neimark Sacker bifurcation

To determine the direction of the invariant closed curve that bifurcates from
the positive fixed point we will follow the normal form theory of Neimark-
Sacker bifurcation given in [1].

Theorem 4.3.1. If 5 = * = 1+A A then (4.2.4) has two complex conjugate roots
that lie on the unit circle and another root lies inside the unit circle. Moreover
for A € (0,1) the Neimark Sacker bifurcation conditions are satisfied.

Proof. At first we will show that (4.2.4) has complex roots. We have
p(0) = ,8+1 < 0 and p(1) > 0, then there exists ¢ € (0,1) such that p(¢) = 0.
Moreover,

2 —A+1
6)\+B i

/ _ 2
P =3 -5 B+1

The discriminant of p/(\) is
, 26 g—-—A+1
arid)= (5 ¥ 1> —46) <6+1>

AR - 12(B-A+1)(B+1)
B (B+1)?
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4B 128+ 1)+ 12A(6+ 1)

a (8+1)?
A2 —12p3% — 248 4+ 1248 + 12A — 12
a (B+1)?

_ —8B*+12AB — 248 + 12A — 12

a (B+1)?

82+ 12(BA+ A—1) — 248

B (B+1)

Using B(A+1)+A—-1=0.

_ 882 +12(—p) — 24

v (B+1)?
Ap'(\) = w <0

So p(A) doesn’t change its direction, hence there exists two conjugate com-
plex roots of p(\)

Next we show that (4.2.4) has two conjugate complex roots on the unit
circle when = %, using the next theorem.

Theorem 4.3.2. (Viete formula) [1]
For any general polynomial of degree n

f(2) = apnz™ 4+ an_12" - +arz + ag

Viete formulas relate the polynomial’s coefficients ay to signed sums and
products of its roots z; , 1 =1,2,--- ., n as follows

—Qp—1

Z1+22+"'+Zn_1+2n: a

Uy
(z120 + 2123+ -+ 212n) + (2223 + 2024 + -+ 222) + -+ Zp_12n = 2

n

a
2129 2y = (—1)”@—2
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Suppose that A, Mg, A3 are three roots of (4.2.4) where A\; = ), and
A3 = (. By Viete theorem to the polynomial

6] g—A+1 1
A =X — L)\ N —
P B+1 B+1 B+1
where ag = 4, a1 = A gy = 75 gy =1 If [\ = [\ = 1 and
A3 = ¢ we obtain
3
—A+1
)\1)\2 + )\1)\3 + )\2)\3 - % - BBH_ (432)
3
—Aap 1
AMAg Ay = — = —— 4.3.3
17 as +1 ( )
from (4.3.3)
1
A1>\2>\3 - )\3 - m

substitute A3 in (4.3.2) and note that A Ay =1
1 B-A+1
B+1 B+1 7

B+1)+NM+X)=0—-A+1

T4+ (A1 + M)

So
M+XA=—-A

substitute A3 in (4.3.1)

g1 p-1
B+1 B+1 B+1

AL+ A =

So 51
M+l=0——=-4
1 2 64‘1

which implies that
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Since the roots are uniquely determined, the above argument implies the ex-
istence of conjugate pair of complex roots on the unit circle.

Let ¢, e~ be the roots of p(\) at B* then,

310 _ B 20 5_A+1ew_ 1 —0.
B+1 B+1 B+1

B—A+1
B+1

1
(cos0+isinf)——— = 0.

cos 30+ sin 30—
b+1

3 f_ | (cos 20+ sin 26)+

Separate the real part and imaginary parts;

cos 30 —

6 _— py
B+1 g+1 g+1

B g—A+1
20 + ————
5+1sm + B—i—l

rewrite the two equations in the form,

sin 30 — sinf = 0.

64 . B-A+1 1
ﬁ+100829— 511 cos@+6+1.

cos 360 —

—A+1
sin20:—5 +

) &4
6 — -
sin 3 7 7

sin 6.

Square both sides of equations,
cos? 30 + (if cos? 20 — (ﬂ) cos 26 cos 36 = (L)2 + (ﬂ_A+1>2 cos? ) —

B+1 B+1 B+1 B+1
2({36;‘?;1) cos 6
2 2
2 —A+1
sin? 360 + <5f‘1> sin? 26 — 3 —fl sin 30 sin 20 = (%) sin? 4.

Then add them to each other,

2 2
cos? 30+ (%) cos? 20— ;—fl cos 26 cos 30+sin? 360+ (%) sin? 60— ;—fl sin 36 sin 20 =
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() + (F5551) cost 0 = 20 cost 4 (557) sin 0

cos? 30+sin? 30+ (%) ’ (cos? 20+4-sin? 20) — 22 (cos 26 cos 30+4-sin 20 sin 30) =

B+1
(ﬁf + (’Bgﬁrl)Q (cos? 6 + sin? 0) — 2(6851’?;1) cos 6
B\ 1\ (B-A+1\* [ 28 28-A+1)
]ﬁ(6+1>_(5+1)_< ﬂ+1> _<5+1_ <5+W2>C%&
Thus,

BH12+2—1-(B-A+1)2=(28B+1)—2(8—A+1))cosh
(BH1)+ 2 —1—(B+1)2+24(B+1)— A* = (282 +26 28 —2+2A) cos
B —A*—1+24(B+1)=(28*—2+2A4)cost

Atﬁ*:ﬁ:;—ﬁ, 2A(8+1) =2 — 23, we have

B2 — A2 —1+4+2-28=(28>—2+2A)cosd
B — A —28+1=(28%—2+2A)cosb
B —284+1— A*= (282 —2+42A) cos b
(B—-1P2-A* (B-A-1)(F+A-1)

S0 = S oA—2 9 _24F—23
_B-A-1HB+A-1) p+A-1 -A
- 28(-A-1) 28 2

then for A € (0,1), ' < cosf < 0. So there exists §* € (%, 7) such that

—A
e ()

Note that e**" #£ 1 for A € (0,1) where k = 1,2, 3,4
Next we will show that % |p=p# 0.

3 B—A+1 1
A) =N — )\ A —
P B+1 B+1 B+1
d|\|? dA\) 0N <O\

a5 = as = oo
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( (—DA+ A+ X
(B+DEBB+1)A2 =260+ - A+1)

d|\? Op(\) oA <~ [Op(A) O
a5 == mm) T Cas amy
p(A) B 9p(A)

) ( Grp X+ PR G )+ ( e X+ PR G )
- 3\ A A

A — ;ﬁ)\ + ﬁﬁJl 32— /324?1)‘ + B5+Irl
_ —1IN2 4+ AN+ 1 R —1IN + AN+ 1

(B+1)2(3\% — 25 a+ 24 (B+1)2(3)32 — 25\ 4 52

B+1)BB+1HA2=28A+8—-A+1)

< (—DA+ A+ )
(

( A+ 2isinf >+ A —2isinf )
B+DBB+1)A2=28A+5—-A+1) B+1DBB+1)A2 =26 A+ —-A+1)

(A4 2isin0)(3(B+1)A2 — 28 A+ B — A+1)+ (A—2isin0)(3(8+1)A\2 — 28X+ 8 — A+1)
N B+DBB+DI2=28A+8—-A+1DBB+1)N2—28A+—A+1)

BA(B 4 1)(N2 4+ A2) = 2BAN + N\) 4+ 6i(8 + 1) sin O(A\? — A?) + 4ifsinO(\ — \) +2A(3 — A+ 1)

B+DBB+1N =28 +B—-A+1)(BB+ 1N =28 A+5-A+1)

But -
A+ A= (cosf +isinf) + (cosf —isinf) = 2 cosb

A2+ A2 = (cos 0 +isinf)* + (cosf —isin0)? = 2cos® § — 2sin? 0
A — X\ = (cosf + isin0)? — (cos@ — isin@)? = 4i cos § sin? 0

6A(SB + 1)(cos? § — sin?0) — 45 A cos 6 + 6i(8 + 1) sin 6(4i cos @ sin 0) + 8B sin? 0 + 2A(f — A+ 1)
B+DBB+DIN2 =280+ -A+1DB(B+1)A2 —2B7A+ 8- A+1)

6A(B+1)(2cos*0 — 1) —48AcosO + (—24(8 + 1) cos O + 83) sin? O + 2A(3 — A+ 1)
B+DBB+DA2 =28+ 8-A+DBB+1DA2 -2 + 8- A+1)
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6A(B+1)(2cos®0 — 1) —4B8Acosf + (—24(8 + 1) cos 0 + 83)(1 — cos? 0) + 2A(B — A+ 1)
(5+1)( (B+DA=28A+ 8- A+ 1)BB+ 1N =280+ 5 - A+1)

At g* =0 = 1+A, cos = cosby = QA,Weget

L GABH1)(EE — 1) +4B8AL + (24(B+ D)2 +88)(1 - A) +24(8 - A+1)
B+DBB+DI2 =280+ B-A+1)BB+1)IN2 28\ +8—-A+1)

dIMZ

GA(S + 1)(4 — )+2BA2+2A(5 A+ 1)+ (128 +1)A+85)(1 - 4%
BHDBB+DA2=26A+F-A+1)B(B+1)N2 =28\ +8—-A+1)

_3A3B+1) —6A(B+1) +2BA%+24(B + 1) — 242 + 12A(B+ 1) + 88 — 3A3(B + 1) — 2BA?
a B+DBB+DN—28A+8—-A+1DBB+1)A2 =26 A+3 - A+1)

B SA(B+1) —24% + 83
ICESINE (5+1)’2—2BX+5—A+1)(3(ﬁ+1)A2-25A+ﬁ—A+1)
Substitute 5 =

1+A

d|A[? 8AZ; — 242 + 8022

ag == BrDBB LN 200 +8—A+DBB+ DN — 260+ 8- A+ 1)

16A — 2A%(1+ A) + 8(1 — A)
I+ ADB+DEB+DA2 =280+ 8- A+1)(B(B+1)A2 =26+ — A+ 1)

B —2A% —2A* + 8A +8
CAF+AB+DBBE DN =28A+B8—A+DBB+1N2 -2+ 8- A+1)

B (A—2)(A+2)(A+1)
CA+AB+HDBB DN —28A+ B —A+1D)B(B+1)N2 =280+ —A+1)

d"\‘z |g=p+= 0if A = —1,—2 but this contradicts the assumption that A
is posmve parameter.

And DL |5 5= 0if A =2but 2 ¢ (0,1) . So DL |55 0 in the in-
terval (0, 1) ]
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Now we shift the fixed point to the origin by taking

T Uu,—-U~
Yo | =1 Vu—V* |, equation (4.2.2) becomes,

Zn W, — W+
Bxn+X*)+2n+X* *
Lnt1 : A+yn)+X* - X
Yn+1 = T (434)
Zn+1 Yn
Equation (4.3.4) can be written as
Yo =JY,+GY,) (4.3.5)

Ty
where G(Y) = §B(Y,Y)+1C(V.Y,)+O([Y])  and Y, = ( " )

Bi(Y,Y) Ci(Y,Y,Y)
B(Y,Y) = ( 0 ) and C(Y,Y,Y) = ( 0 )

0 0
where . 82Y(§)
Bz('rvy) = le 5 85 |§ O(xjyk)
and . Y (6)
Ci(w,y,2) = jg:l mk o(75yr21)
L (B=A+1T) f
Bi(¢,9) = W%% B+172 5 (P1at o) — (5"’1) oy (P23 +P302)
Ci(g,9,m) = W@%W + 3 iﬁl) (P2thams + P3thamna + Path3ny)

(5 n 1) (¢2¢2771 + 19212 + P2tp1 1)

Now, we find the eigenvectors of J and J* corresponding to e™ at 6, =
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0 = cos ().

Let Jg = ¢%q , JTp* = e""p* where ¢ and p* are the eigenvectors corre-

sponding to the eigenvalues ¢® and e~ | respectively .
Solving (J — Mg = (J — e I)g =0
B8 i0 (B—A+1) 1
B € T A B 0
1 —eio 0 q=1 0
0 1 —eifo 0

Let g1 = 1, from the second equation
Ly + (=¢™)gz = 0
So g2 = e~ and from the third equation we get

¢+ (—e™)g3 =0

So q3 = e 2%

1
Thus we obtain g ~ [ e~
o—2i00
Note that this choice of g satisfies the first equation too. To have a non zero
solution of the system (J — AI)g = 0, the matrix (J — A/) must be singular,

that means |J — A| =0

, . —A+1 1
|J— M| = <ﬁ—e%%> e2190+57+ew+—

B+1 B+1 +1
— 2% p _ i _ f—A+ 16490 X 1 o200 | —
8+1 Bg+1 B+1
So we have
L 0o + 5 —A+1 0o 1 672190 _
B+1 B+1 B+1
Also, solving (J — A)Tp* = (J — e )Tp* =0
% e~ o 1 0 0
_ (5;:‘:'1‘1‘1) —eifo 1 p* = 0
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Let p; = 1, from the first equation
s

Gy ¢ =0
So ph = e~ — %, from the third equation we get
1 .
Fy1 ¢ =0
* 0,
So p3 = ;7_,'_01
1
Thus we obtain p* ~ | e~ - %
e'’0

B+1
Note that this choice of p* also satisfies the second equation.

To normalize p* and ¢, we must have < p*, ¢ >= 1, where < .,. > is the
standard scalar product in C3.

3 , 1 1
<pg>=>piai=| ¢ 75 ¢t
i=1 e~ e—2if
B+1
—if) —if) ~3i6)
_ 14 e it _ s 4 o200 P g Pe 0L e
B+1 B+1 B+1  [+1
1
—i0 B e e—3100 \ _
Solet p=mnx| ¢ o PT1 Wheren:@_ﬁﬁﬂO+ B—HO) !
B+1

The critical real eigenspace T corresponding to A; 2 is two-dimensional and is
spanned by {Re(q), Im(q)}. The real eigenspace T** corresponding to the real
eigenvalues of J is one-dimensional. Any vector z € R? may be decomposed
as

r=zq+zq+vy
where z € C!, and zq € T¢, y € T*. The complex variable z is a coordinate

on T°¢. We have
z=<p,x>
y=x—<p,x>q— <p,xr>q
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In these coordinates, the map (5.3.14) takes the form

Z=e2+ <p,G(zq+ 27 +y) >
y=Jy+Gzq+20+y)— <p,G(zq+ 20+ y) > q— <p,G(2q+ 20+ y) > ¢

The previous system can be written in the form:

zZ = GiHOZ + %G2022 + ané + %G0252 + %G21225+ < Glo,y > 2+ < Gol, Yy >z
J=Jy+ tHy2? + Hy2z + LHp2? + L Hy 222

Where G20 =< p7B<Q7Q> >, Gll =<p, B(Q7 Cj) >,
G02 =< p7B<(jJ Cj) >7G21 =<p, C(q7Q7Q) >

{ Hy = B(q,9)— < p,B(g;9) > ¢— < p, B(q,9) > q

Hu = B(q,9)— <p.B(¢.q) > ¢— <p, B¢, q) > q

{ <Gy >=<p,Blg.y) >,< Go,y >=<p,B(@,y) >

And the scalar product in C? is used.

From the center manifold theorem, there exists a center manifold W¢ which
can be approximated as

1 1
Y = V(Z, 5) = 5’11]2022 -+ wnzi + 511)0252

where < ¢,w;; >= 0. The vectors w;; € C* can be found from the linear
equations

Wy = (€2i9013 — J)ilHQQ

wyy = (Is — J)"'Hy

woz = (€713 — J) " Hyy

So z can be expressed as

. 1 1
z= 61002 + §G2022 + GHZZ + §G0222

1 )
+§(G21 +2<p,B(q,(I—J) " "Hu1) >+ < p, B(q, (62100[ — J) "Hy) >)z%z
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Taking into account the identities

N T
=1 " co eio — 1
and L
(I )'a=ped, (01— D) = e
=1 "o eio — 1

also we can express z using the map

) 1 .

> — ibo k=g

z=e"2+ E —k'jlgka z
k+i>2 M

where
goo =< paB((Lq) >, g =< p7B<QJCY> >, Jo2 =< p7B<(jJCY> >
g21 =< D, C(Qa q, Cj> >+42< b, B(QJ (I - J)_lB(q’ q)) >+

efieo (1 _ 26i90)

<p, B(q, (¥ 1=1)"'B(g,9)) > +—

<p,B(q,q) ><p,B(q,q) >

2 B ) eifo o ,
(—)1_€_Zplol <1p,B(q,Q) > P = gl <». B@.q) > |
r equivalently

Z=e"z(1+d(8")))2

where the real number A(8*) = Re(d(5*)) that determines the direction of
bifurcation of a closed invariant curve, can be computed via

671'90 921 (1 _ 26’i90 )672i90

X 1 1
A(B") = Re( 5 ) — Re( 201 — cifo) g20911) — §|911|2 - 1\902|2

Where go0 =< p, B(q, q) >

2(5_14_,_1)6—21‘60 _25671'90_26—31‘90
(B+1)2
B(q,q) = 0 _
0

o O~
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_ f+1 2(8 — A+ 1)e 2% — 2370 — 2=3i0
920 = 2(8 + 1) — Beto + edifo (B+1)

2(8 — A+ 1)e 2% — 23e=0 _ 93
(6 + 1) (2(5 + 1) — Beio 4 63i90)

920 =

20— A+1) = B + e70) — (g0 4 ¢7if0)

g11 =< paB(Q7(j) >7 Bl(q7 6) =

(B+1)2
2(8—A+1)—2(B+1) cos bg
_ (B+1)?
B(Q? Q) = 0
0
_2(5—144-1)—2(54—1)00890* B+1
e (B+1)? 2(B+ 1) — Betfo + e3ifo
_ 2(B—A+41)—2(B+1)cosby
gi11 = (B + 1) (Q(ﬁ + 1) o Beigo + e3i90)
2(5—A+1)62i90—256i90—263i90
o o (8+1)?
go2 =< p, B(q,q) >, B(q,q) = 0
0
_2(B— A4 1)e* —2pei — 2¢3i0 B+1
o (B+1)? 2(B + 1) — Beifo 4 e3ifo

_2(B-A+ 1)e2ifo — 93¢t — 2¢3if0
92 = "B+ 1) (2B + 1) — Beto + 3o

g21 =<p, C(Q7Q7q_> > _'_2 < p7B<Q7 (I o '])_IB<q’q_)) >+
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e—i@o (1 _ 2€i90)

< p,B(q, (e**1-J)"'B(q,q)) > + <p,Blq,q) ><p, B(q,q) >

1 — eto
2 - ) e’iao e )
Tl <P 8D > P~ gl <. B(@:a) > |
—6(B—A+1)e" %0 428(142e2%0)42(2+e~2%)
_ (B+1)3

Clg,9,q9) = 0

0

. f+1 —6(8 — A+ 1)e ™ 4+ 25(1 + 2e72%) 4 2(2 + e~2i%)
<p7C(Q7Q7 q) >= 1) 316, ( 3
2(8 4 1) — Bt + €3t (B+1)

—6(8 — A+ 1)e7 + 28(1 4 2e72%) 4 2(2 + ¢2if0)
(B+ 12 (2(B +1) — eifo + it

<p,Clq,q,q) >=

To calculate < p, B(q, (I — J)"'B(q,q)) >

1 B=A+1 -1 \ 1 B+1 A-pB 1
B+1 B+1 B+1 B—A+1  B-A+1 [-A+1
B+1 1 1
(] _ (])*1 - -1 1 0 — B—A+1 [—A+1 [-A+1
_ B+1 1 B—A+2
0 1 1 B—A+1 B—A+1 B—A+1

2(8—A+1)—2(B+1) cos by
(B+1)(B—A+1)

2(B—A+1)—2(B+1) cos by
(I —J)'Blq,q) = (B+1)(B—A+1) =

2(8—A+1)—2(B+1) cos 6o
(B+1)(B—A+1)

U Unn \nn

B(q,(I-J)"'B(q,q)) =
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M
0
0
Where
C2B-A+1) B —ifloy 1 —ifo | _—2ifo
M EEE Se 7(B+1)2S(1+6 ) (5+1)28(6 + e 2%0)

g 2(6—A+1)—2(8+1)cosby
- B+1D(B-A+1)

(B+1)M
(B + 1) — Beifo 4 e3ifo

<p,Bla,(I = J)"'Bl(g,)) >= 5

To find < p, B(q, (e** I — J)"'B(q,q) >

e2ib0 _ B p-A+l -1 -1
B+1 B+1 B+1
. _ 210g
(621901_ J)—l — 1 (& 0
O _1 62’i90
ity 1=(B=A+1)e?0 ¢i%
B+1 B+1
240 40y _ B 20 1
:%eoeoﬁﬂeo B+l
210 B 4i0y B 2i0 B—A+1
1 e B+1 e ,6’+1€ °+ B+1
Where D (B + 1)ebifo — Belifo (5 — A+ 1) — 1
ere D =

B+l
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ity
LD

0] _ ) 1Blg.q) = | LD
(e )" Blg,q) =

%
B(q, (e*™I - J)"'B(q.q))
2((%::11;3L 3i0y ~ flL)QD(emo 4 e5i90) . (6+€)2D(6i60 + e4i90)
_ 0
0

<p,B(q, (¥ —J)"'B(q,q) >

L
T DB+ 1)(2(B+1) — Beifo + eBifo)

(2(5 — A+ 1)e¥0 — B(eif 4 i) _ (eifo e4¢90))

1 .
A(BY) = §R€{6_Z9°[< p.C(¢.¢,9) > +2 < p,B(q,(I — J)'B(q,q)) >

+ <p,B(q, ("1 - J)"'Blq,q)) >]}

LetR; = Re{e™™ < p,C(q,9,q) >}
6(3 — A+ 1)e 2% + 23(e%0 4 2¢7310) 4 2(2¢0 + 6*31'90)}
(B+1)2(2(8 + 1) — fet + €%if0)

Multipling and dividing by the conjugate of the denominator, the numer-
ator becomes,

Ry = Re{—

(4B(B+1) +8(B+1))e ™ + (=12(8 — A+ 1)(B+ 1) — 48 — 23%) e~2i%

+ 4B+ 1) +8B(B+1)+68(8 — A+ 1)) e % 4 (—45% + 4) e~ 1if0
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—6(8— A+ 1)e 5 4 (2 4+ 43)e 0

Taking the real part of the numerator, and denote it by C}
Cr=@8(B+1)+4B(B+1))cosOy+(—12(8 — A+ 1)(B + 1) — 45 — 2/3%) cos 26
+(—4(f+1)+8B(B+1)+65(8—A+1))cos3by

+ (—45% +4) cos 40y — 6(8 — A+ 1) cos 56y + (2 + 4/3) cos 66,

Multiplying the denominator by its conjugate, we get

(B+1)°[4(B +1)> = 2B(B + 1)e™ — 28(B + 1)e™™ +2(B + 1)e*™

+ 3% = e + 2(B + 1)e™¥% — Bem>0 4-1]

Which is equal,

Co=4(B+1)*+ 2+ 1—4B(8 + 1) cos by — 28 cos 20y + 4(S + 1) cos 36

Ry =Re{e™™ < p,C(q,q,q) >} = (5;111)202
2(8 + 1) Me~i
(B+ 1) — peito + e3ifo
4(5 — A + 1)5«6—2190 . 265«(6—1'90 + 6—2100) _ 25(6—31‘90 + 672@'90)
(B +1)(2(5 +1) — feto + e3) }
Multipling and dividing by the conjugate of the denominator, the numer-
ator becomes,

8(B—A+1)(B+1)Se 2% —43(8 +1)S (e~ + ¢200) —

Let Ry = Re{e ™ < p B(q,(I-J)'B(q,q)) >} = Re{z }

R2 = Re{

4(5 4 1)5(6—%90 + e—3i00> _ 45(5 — A + 1)5«6—31‘00 + 2528(6_%00 4 €—3i90) 4

23S (e300 4 e=4%) 1 4(3 — A+1)Se=%% — 235 (¢4 4 =510) — 2G5 (=0 4
6*6i90)
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Taking the real part and denote it by Cj5, we get,

C3 = —4p(B+1)S cos by +

8(B+1)(B—-A+1)S —48(8+1)S —4(B +1)S + 23%S) cos 26,
+ (288 +23%S —4(B+1)S — 4BS(B — A+ 1)) cos 30y +
(4(p—A+1)S —2pS — 25) cos 50y — 25 cos 66,

Cs
(B+1)Cy
Let Ry = Re{e ™ < p, B(q, (e*®1 — J)™'B(q,q)) >}

So RQI

L(Q(ﬂ — A+ 1)€3i90 — 6(6%90 + e5i90) _ (eiﬁo + e4i90))6_i90
D(B+1)(2(8 + 1) — Beito + e3i%)

Rg == Re{ }

(2(8 — A+ 1)e 2% —28e70 — 2e=310)(2(B — A + 1)e*0 — B(eif0 4 e1i00) — (1 4 ¢3it0))
(B + 1)eSi% — Bedito 1 (5 — A+ 1)e2i0 — 1)(2(6 + 1) — Beido 1 ¢3ifo)

The numerator is,

= Re{ }

4(B—A+1)2—28(8— A+ 1)(e7 + %) —2(8 — A+ 1)(e % 4 ¢i0)
_46(/8 _ A+ 1)e’i90 +2/82(1 +63’i90) +2/6(67i90 +62i90)

—4(B — A+ 1)e % - 28(e72%0 4 ¢ifo 4 2(e73i00 4 1)

Which is equivalent to,

CLO +a]1€7i90 + a26i90 +a3€72i90 +a462190 + 2/8263i90 + 2673i90

Where,

ap=4(8—A+1)*+26%+2

ar=2-2B(F—A+1)—4(—A+1)

ar=20-2(—A+1)—-48(8—-A+1)
a3 =20 —-2(f—A+1)
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as =28 —2B(8— A+1)

The denominator is

2(8 +1)%e8% — 2B(5 4 1)e* + 2(8+1)(8 — A+ 1)e?
—2(B+1)=B(B+1)eT™ + 3270 — B(B— A+ 1)e¥ 0 4 B 4 (B+1)e%™ — Ge
+ (B — A+ 1) — g3t

Which is equivalent to,
(B+1)e% +aze™ a0 + a7 +age™ +age>0 4 a10e? 4 fe® —2(F+1)

(4.3.6)
Where
as=—B(B+1) -4
ag = 2(B +1)?
ar=3+pB-A+1
ag = —206(8+1)

ag = —B(f—A+1) -1
a =28 — A+ 1)(5+1)

The denominator conjugate is,

(/8+1)€_9i90 +a56—7i90 +a6€—6i90 +a7€—5i90 +a86—4i90 +a96—3i90 +a106—2i90 +66—i90 _2(/6+1)
(4.3.7)

Multiply the numerator by (4.3.7) we get,

—2(8 + 1)ag + a2ff + asaiy + 26%ay

+ (Bag — 2(8 + 1)ar + asarg + 2as? + asag)e

+ (Bag — 2(B + 1)az + 2a13?)e™™

+ (apaig + Bai + asag + agag — 2(B + 1)as + 2a75%)e=2%

-+ (253 - 2a4(ﬁ + 1))6%90 -+ (CLoag + aiaio + o0 -+ &35 + aqay + 252616 — 4<ﬁ -+
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1))e3i%

—432%(B +1)e¥% + (agag + arag + asar + azayg + agag + 2a55% + 23)e 4%
+ (apay + ajag + azag + asag + asas + 2a19)e” %

+ (apag + arar + asas + azag + 26%(8 + 1) + 2aq)e 6% +
(apas+aiag+asar+ay(B+1)+2ag)e” "% +(aya5+ax(B+1) +azag+2ar)e 5%
+ (ao(B + 1) + azas + 2ag)e=2% + (a1 (B + 1) + 2a5)e10%0

+ az(B+ 1)e 0 4+ 2(5 + 1)e~ 12

Taking the real part of the previous expression, and denote it by Cj.

Cy = =2(B + 1)ag + a2 + asaro + 26%ag

+ (Bag — 2(B + 1)a1 + asayg + agag + 2as 3% + Bag — 2(B + 1)as + 2a,05%) cos by
+ (apaig + Bay + azag + agag — 2(8 + 1)az + 2a7 6% + 2% — 2a4(8 + 1)) cos 26,
+ (apag + araig + asag + azf + agar + 28%ag — 4(B + 1) — 43%(8 + 1)) cos 36,
+ (apas + ayag + asay + azaig + agag + 2as53? + 23) cos 46,

+ (apay + aras + asag + azag + agas + 2a;g) cos 56y

+ (apag + ayay + asas + azag + 26%(8 + 1) + 2aqg) cos 66,

+ (apas + arag + agar + a4(S + 1) + 2ag) cos 70y

+ (aras + a2 (B + 1) + agag + 2a7) cos 86y + (ag(5 + 1) + azas + 2ag) cos 9,
+ (a1 (B8 + 1) + 2a5) cos 100y + az(5 + 1) cos 116y + 2(5 + 1) cos 126,

Now multiply (4.3.6) by (4.3.7), and denote it by Cs,



4. Third order rational difference equation

54

Cs=5(B+1)2+a2+a2+a2+a2+ad+al,+ 3+
(asas + agar + azag + agag + agaig + apf — 2B(B + 1))e' +

(a5a6 + agay + arag + agag + agaig + a9 — 25(5 + 1))6490 +

(B + 1)as + asar + agag + arag + agaig + agB — 2a10(B8 + 1))e* +
((B+ Das + asay + agas + azag + asaip + agff — 2a10(8 4 1))e~ 2% +
((B + 1)ag + asas + agay + azaig + agB — 2ag(B + 1))e%0 +

((8 + V)as + asas + agag + ararg + asf — 2ag(5 + 1))e=3% +

(B + D)ar + asao + asaro + arf} — 2a(6 +1)e™ +

(B 4+ Day + asag + agayo + a7 — 2as(f + 1))e~ 4% +

((5 + 1)ag + asaig + agf — 2a7(5 + 1))€5i90 +
(B + 1ag + asao + agf — 2a7(8 + 1))6—5i90 +

(B + Lag + asB — 2ag(8 + 1))e%0 +
(B + D)ag + asB — 2a6(B3 + 1))e~%% +

(B + Dazo — 2a5(8 + 1)) + (8 + 1wy — 2as(B +1))e T 4
B(B+1)e8% + B(B + 1)e=8 — 2(3 4 1)2e%0 — 2(3 4 1)2e—%0

Which is equal to,
Cs=5(B+1)*+ai+a+a2+a+ai+al,+5+

2(asag + agar + arag + agag + agaig + apff — 26(5 + 1)) cos By +

2((8 4 1)as + asar + agag + arag + agarg + agff — 2a19(S + 1)) cos 20y +

2((B + V)ag + asas + agag + azaig + asf — 2aq9(S + 1)) cos 30y +
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2((B + 1)ar + asag + agaig + a75 — 2as(S + 1)) cos 40y +

2((5 + 1)&8 + asaqig + CLGB — 2a7(ﬁ + 1)) COS 590 +

2((B+1)ag + asp —2a6(B+ 1)) cos 66y 4+ 2((8 + 1)aio — 2a5(5 + 1)) cos 70, +

28(B + 1) cos 80y — 4(3 + 1) cos 96,

Where,
cos bty =

2

cos 20y = 2cos?fy — 1 = A; -1

43
cos 30y = 4 cos® Oy — 3 cos fp = 3454

cosdfly = 2cos?20) — 1 =2(4" —1)> -1
cos 50y = 2 cos 26 cos 30y — cos O = (A; —1)(34 - A% + 4
cos 60y = 2cos? 30y — 1 = 2(% — A—S)Q —1

2

cos 79% = 2cos 2290 cos by — cos 30, \
=205 — 1) ((F —DEA- A+ 3) + 254

cos 80y = 2cos? 4y — 1 =2 (2(4 —1)? — 1)2 1

cos 96y = 2 cos 46, cos 56, — cos 8,
cos 90 = 2 (2(%“’ —1)2— 1) ((A; —1)(3A — 43) + g) 44

0081090220082500—1:2«%2_ )(3A—A3)+§)2_1

cos 11002: 2 cos bl cos 60y — cos by \
=2((F-)BA-A)+4) 2% - 57 -1)+3

cos 120 = 2 cos? 60y — 1 = 2 (2(% — 42 1)2 -1
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1 1
A(B") = S Ri+ Ry + 5 Ry

N 1 Cl 03 1 C’4
A<5)_2<(6+1)2(JQ> + (5+1)02+2<05>

_Ci+2B+1)Cs Oy
2(B+1)2C, 205

Theorem 4.3.3. If A(5*) < O(respectively, > 0), then the Neimark- Sacker
bifurcation at B = B* is supercritical(respectively, subcritical) and there exists
a unique invariant closed curve that bifurcates from the fixed point which is
asymptotically stable (respectively, unstable).




5. Fourth order rational difference equation

5.1 Introduction

Camouzis [4] gave an analytical description of the local stability of the posi-

tive equilibrium point of

0Xp_o+ X3
A+ X, 3

with positive parameters ¢ and A and non negative initial conditions, also

he investigated the global attractivity of the positive fixed point, and derived
the following results:

X1 = (5.1.1)

1. The positive fixed point is locally stable when
03+ 0~ (2A7+4A+ Do+ AP+ AP - A-1<0

2. The positive fixed point is locally unstable when
o340 — (A7 4A+2)0 + A3+ A2 - A—1>0

3. Assume that A—1 < 0 < A+1 then every positive solution of equation
5.1 converges to the positive equilibrium point.

R.Zahang and X.Ding [6] studied the existence and direction of Neimark
Sacker bifurcation of the same equation and gave the following results:

Theorem 5.1.1. Suppose ¢ > A — 1 when o satisfies 03 + 0? — (2A? + 4A +
2)o + A3 + A2 — A — 1 < 0 then Neimark Sacker bifurcation occurs.

Theorem 5.1.2. If a(c*) < 0 ( respectively > 0) then the Neimark Sacker
bifurcation is supercritical (respectively subcritical) and unique closed invari-
ant curve bifurcating from the positive fixed point is asymptotically stable
(respectively unstable).
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5.2 Dynamics and Bifurcation of the fourth order equation

Consider the equation
B Xn + Xn—3

A+ X,
with positive parameters and initial conditions. To find the fixed points we
solve the equation f(x,z,z,x) =z
So .

= B+HDX

A+ X+

There are two fixed points, the zero fixed point where X* = (0,0,0,0) and
X*=B-A+1,-A+1,0—A+1,—A+1). We assume that 5+1> A

X1 = (5.2.1)

U, X,
Vn _ anl
Let w.o | = x., then

Zn Xn—?)
Unt1 Bt
Vn—i—l U,

= n 5.2.2

Wn+1 Vn ( )
Zn+1 Wn

The Jacobian matrix of (5.2.2) at the positive fixed point is

B —(BX"+X*)
A+X* (A+X*)2
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The characteristic equation of the Jacobian matrix is P(A\) = |J — M| =0

By z6-A+D) 1

B+1 6+>1\ B+1
1 — 0 0
P(\) = =0
» 0 TR
0 0 1 =X
3 s B—A+1, 1
PN =|5——-A)(-N)+—N———
) (5+1 (=X p+1 B+1
64 p—A+1 1
PA) =M= —-N+ A — 5.2.3
() B+1 B+1 f+1 (623
Theorem 5.2.1. The positive fized point is asymptotically stable if A > ?éi;)l;
and unstable if A < ?gf;)lz)

Proof. To study the stability of the fixed point we use the next theorem

Theorem 5.2.2. [}/ For a polynomial F(\) = A* + az\® + aa\* + a1 A + ag to
have roots in the unit circle, the following conditions must be satisfied

|a1—|—a3] <1+CLO+CL2, |CL1—CL3| <2(1—CLO)

as—3ag < 3, ao—l—ag—i-ag—ka%—i-agag—i-aoag < 1+2a0a2+a1a3+a0a1a3+a3

For the polynomial

—A+1 1
H)_M—Jiﬁ+ﬁ Tl
B+1 B+1 B+1
ag = B%—ll? a; = 0, Ay = ﬁ;_A‘r—f17 as ﬂ;—i-ﬁl

The first condition
’G1+a3‘ <14+ ag+ as

3 1 B-A+1
+ﬂ+1<1_6+1+ B+1
3 1 B-A+1

E B B Sy
f+1-0+A-1

<1
g+1
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i<1
B+1

So
A< p+1

Which is equivalent to 5 — A+ 1 > 0 and the last inequality is satisfied by
assumption.
The second condition is |a; — as] < 2(1 — ag)

<2(14+—-—)

‘ﬁ
B+1
B

A
[\
+

B+

™ =
|
N
=
+
—_

<2
+1

B—2<28+

=
\&)

Thus,
B+4>0

Which is also satisfied for every f.
The third condition is ay — 3ag < 3

p-A+1
b+1
B—A+4
6+1
b—A4+4<36+3

<3

Thus,
26+A—-1>0

The last inequality holds for every [, since
1-28<A<fB+1
The fourth condition is

2 2 2 2 3
ap + as + ag + aj + agaz + apaz < 1+ 2apa2 + a1as + apaias + ap
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Which gives,
~1 B-A+1 1\’ B—A+1 -1 [ -8\’
G+l A+1 +<5+1> (H 5+1 >+B+1<ﬁ+1>
-2\ [(p-A+1 1\’
<”<ﬁ+1)< CE )*(/m)

—1 3 1 B—A+1\ B—A+1
<ﬁ+1><1+(6+1)2>+(5+1)2<1+ 5+1 )* 511

_2(B-A+1) 1

(B+1)? (B+1)3

<1

Multiply by (8 + 1)3
— ((B+1)? + B2)+(B+1)+(B—A+1)+(B—A+1)(B+1)? < (B+1)*—2(B—A+1)(B+1)—1

—28%2+ 28+ 1)+ 28— A+2+(B-A+D)(B+1)(B+3) < (B+1)°*—1

28— A+1+(B-A+DB+DB+3) < (B+1)° -1

282 —A4+2+(B-A+1)(B+1)(B+3) < +368°+33+1
262 = A+1+(B-A+1)(B+1)(B+3) <5 +36+38
1—A+(B+1)*(B+3) - AB+1)(B+3) < p°+552+38
1—Al+(B+1D)(B+3)+ (B+1)*(B+3) < B +58°+33
1-AQ+ B2 +48+3)+ B3 +582 +78+3 < B> +55%+ 33

1—A(BP+4B+4) < —48-3
~A(B+2)* < —48 —4

1
FRACER)
(8+2)?
For this condition on A the eigenvalues of the characteristic equation will lie
within the unit circle, hence the fixed point is stable. O

=A" A" <1
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5.3 Direction and Stability of Neimark Sacker bifurcation

Theorem 5.3.1. If A = A* = ?éig)lg) then (5.2.3) has two complex conjugate
roots that lie on the unit circle . Moreover the Neimark Sacker bifurcation

conditions are satisfied.

Proof. First we show that equation (5.2.3) has two complex conjugate roots,
using Descartes and Viete theorem.

Theorem 5.3.2. (Descartes theorem)[2] The number of positive roots (counted
considering their multiplicity) of a polynomial P, (x) with real coefficients is
either equal to the number of sign alterations between consecutive monzero
coefficients or is less than it by a multiple of 2.

Applying the Descartes theorem to P, (—x), we obtain a similar theorem
for the negative roots of the polynomial P,(x). So the number of negative
roots of a polynomial P,(z) is equal to the number of positive roots of the
polynomial P,(—xz).

Theorem 5.3.3. (Victe theorem)[1] Let cv, 0,7, 0 be the roots of the polynomial
P(x) = az" +b2® + cx* +dz + e =0

then

a+0+7+5:7

aa+07+75+a7+a5+0522
a

aoy + ayod + acd + 0y) = —
a

e
aoyd = —
a

Applying Descartes theorem to (5.2.3), the alteration in sign is (+—+—)
so it has one positive root or three positive roots. Also applying Descartes

theorem to P(—A\), the alteration of sign is (+ + +—) so P(A) has one nega-
tive root.
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B B-A+1 1 B-A+1

BCEI R TS U E S T TS W

P1) =1

B B—A+1 1 38—A+1

6+1+ B+1  B+1  B+1 >0

P(-1) =1+

So there exists two real roots say py € (0,1) and po € (—1,0).

Also 35 25— At 1)
— A+
P'(\) = 4)3 — A+ A=0
) g+1 b+1
30 26—A+1)
A 4N — A+ =0
( b+1 b0+1
B 206—A+1)
So)\—00r4)\2—;’—ﬁ)\+%—0

equivelantly 4\2(3+1) — 38X +2(B—A+1) =0
Which gives,

A_3ﬁi¢w%—3m5—A+4Xﬁ+n
B 8(B+1)

But the discriminant of the previous quadratic equation is negative since,
A=962-32(6—A+1)(B+1)

=982 -32(B* - BA+28—-A+1)
= —230% + 328A — 6453 + 324 — 32
= —234% — 643 — 32 + 324(B + 1)
< 2387 — 648 —32+32(B+1) = —235> - 328 <0
So P’()\) has one real root, hence P()\) changes its direction only once. To

show that the positive real root is simple, by the way of contradiction suppose
it has multiplicity equal three, then by Viéte theorem,

3/11 + lo = (531)

B+1

B—A+1

1 (5.3.2)

Bpapi + 3ui =
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Bpiagi2 + it = 0 (5.3.3)

-1
By = —— 5.3.4
g 2 51 ( )

From equation (5.3.3) p3 = —3us, substitute in (5.3.4) we get,
-1

M= 5

/ 1
U2 = m>0

A contradiction. So equation (5.2.3) has two real roots and two conjugate
complex roots.

The next step is to show that |[A\;o] = 1. We will use Viete theorem Let
1,2 be the real roots of (5.2.3), and Ay = Ay

s
o+ A+ A= —— 5.3.5
H1 T 2 1 2 B+l ( )
—A+1
piple + faAr + AtAe + piAr + pide + ppde = 66—1—1 (5.3.6)
Hafho A1 F A A F pafiodg + e Ag =0 (5.3.7)
—1
MAy = —— 5.3.8
H1f2A1A2 B+1 ( )
From equation (5.3.8)
Ao = _ (5.3.9)
1o A1A2 = [ fle = 1 0.
Substitute in equation (5.3.7)
ot e =0
5+11 H1 5+12 M2 =
—1
—B+1(A1+A2)+m+uz =0
1

B+1
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Substitute in equation (5.3.5)
1 p
(M A) F A Ay =
5—1—1( 1 2) 1 2= 51
1 p
——+ 1) (N + X)) = ——
+1+>(1+2> +1
p+2 s
—— M+ X)) =—"—
M TA) =50
A+ Xy = 75 (5.3.11)
B+ 2
Using equations (5.3.9), (5.3.10) and (5.3.6)
1 B—A+1
oM L A e+ ppde = S
B+1 HaA1 1AL T 1 A2 = 2 A2 B+1
I6; B—A+1
O X)) =
F+1 p2(A1 + A2) + pa (A1 + Ag) s

B-A+1 B 1-A
f+1 B+1  B+1
Using (5.3.10), the last equation gives

(A1 4+ A2)(p1 + pr2) =

1 , 1-
Frii A =5

+
A+ X)?=1-A4

N

Using equation (5.3.11) we get

5\
(M) 14

(BN (B+2P- 4B+,

Since the roots are uniquely determined, the above argument implies the



5. Fourth order rational difference equation 66
existence of conjugate pair of complex roots on the unit circle.
Let \ = ¢*
I} b—A+1 1
P =M - N+ M\ —
9@ p+1 pf+1 B+1
then A1 )
P(ei®) = et — s 310 f—A+ 20 _ —0
B+1 B+1 B+1
. s . f—A+1 . 1
cos 40+1 sin 40— cos 30+ sin 30)+————(cos 20+isin 20)——— = 0
ndf =775 A n20)-575
Separate the real and imaginary parts
15} b—A+1 1
cos 46 — cos30 + ———cos20 — —— =0
p+1 p+1 B+1
. s B—A+1 .
sin 46 — sind3f + ——sin20 =0
B+1 B+1
Rewrite these equations in the form
15} b—A+1 1
cos 460 — cos3) = ——————cos 20 + ——
f+1 B+1 B+1
. g B—A+1
sin 46 — sin3f = ——— sin 20
pf+1 p+1
Square both sides of previous equations,
cos® 40 — 28 cos 46 cos 360 + L 2 cos® 30 =
g+1 g+1
2 2
1 (B—A+1) f—A+1 9
—— ] —2————"c0os20+ | —— | cos“20
<5+1> (B+1) B+1

2
sin? 460 — BQ—fl sin 46 sin 30 + <ﬁﬂ+1> sin?360 = (W) sin? 26
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Adding the equations up, we get.

2
1-— 5251 (cos 46 cos 30 + sin 46 sin 36) + <56—1—1>
! B—A+1\" _(B-A+1)
—(5+1)2+< 11 ) 27(54‘1)2 cos 26
283 5\ 1 B—A+1\> B-A+1 ,
1—5+1COSQ+<6+1> _(/8—|—1)2+< 511 )—2 CESE (2cos”6—1)
28 B-1 (B=A+1\" (B—A+1) ., _(B—A+1)
1 5+1c089+(5+1)2 ( 1 )+4 G+ 17 cos” 0 27(54'1)2 =0
B-A+1) 2y 28 B-1 (B—A+1\(B-A+1 2 \ _
4Wc0s Q—B+1COS«9+1+5+1—< 1 )( G+l +5+1>_0
4WCOS29—2ﬁ0089+25—(W)(ﬁ—A—F?)):O
26(B+1) 26(+1) B—-A+3
COSZQ_WCOSQ+4(5_A+1)_ 1 =0 (5.3.12)
From equation (5.3.11)
B
>\1+)\2—m
QCosezﬁf_z
SO
cosf = b
2(8+2)

Note that this is a root of equation 5.3.12,

_ 4(B+1) _ _ B
At A= L define cos 6y = By
1

0 < cosby < %, hence 6y = cos™ (

sy ) and 6y € (0, 7).
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Where 6y # 0, £%, 3%, 7, it follows that e #£ 1 for k € {1,2,3,4}

For the transversality condition we show that dl’\| |ax 0, # 0

dA? | [OP(N) o)) — (OP(\) X
qA _A< 9A apm)“( 9A apw)

_ ) —)\2 1 5\ _(/\)2 1
= 41 45\3_3ﬁ)\2 B—A+1) \ B+1" 43— 38 )2y 2B-A+D)

5 +1 p+1 B+1
_ —A + A
(B+ D)(@N — 2z + TN T (g 1w — e 4 ZEAHL)
Y —\
+

TAB IO 382128 — A+ DA 4B+ DM —3802+2(8— A+ 1A

“A[A(B 4 1A = 38N+ 2(8 — A+ DA+ (=X) [4(8 + 1A = 38A2 + 2(8 — A+ 1)}
[4(8+ 1)(V)? = 3B(V)2 +2(8 — A+ DA [4(B + 1)(N)? = 38(A)2 +2(8 — A+ 1))

—A4B+DAN 38X —2(B—A+1) —4(B+ DA +3BA—2(8 - A+ 1)
[4(8+ 1)(V)3 = 3B(N)2 +2(8 — A+ DA [4(B + 1)(A)? = 3B(N)2 +2(8 — A+ 1)\

—4(B4+ 1N+ X)) +38N+N) —4(B—A+1)

L
Where
L = 16(8+1)°+95+4(8— A+1)*— (126(8+1)+65(8—A+1)) A+A)+8(S—A+1) (5+1) (A*+X?)
L=16(84+1)249824+4(B—A"+1)* = (12B8(5+1)+63(8— A*+1))(2 cos by )+

8(8— A*+1)(B+1)(2cos* by — 1)

d|\? _ —8(B+1)(2cos*0y — 1) + 68 cosby — 4(8 — A* + 1)

dA 00,4+ = L




5. Fourth order rational difference equation 69

~ —16(8 4 1) cos® by + 66 cos by +8(F+ 1) —4(5 — A* +1)
B L

_ —16(8 4 1) cos® Oy 4 65 cos Oy + 4(5 + A* 4+ 1)
- L

Suppose that d|A?|/dAlg, 4 = 0 , and substitute

L 4B+1) 1
PrAF=itr Gy ~ U U gp)
G (oo
—165*(8 + 1) 65 i (B+1) ((5+2)2+4)) =0

4B+2?2 206+2) (B+2)7

—4p2(B+1) | (B+1) 36%(8 +2)
Grar lrrp IO T =0
BA(—48—4+384+6) (B+1
| (8 +2) )+<(ﬁ+2>>2((5+2>2+4)>:0
FR-B)+BHDF+45+8) _ 78 +128+8
(B8 +2)?  (B+2)
A contradiction so d|\?|/dA|g,.a+ # 0 O

We have shown that system (3) undergoes a Neimark-Sacker bifurcation.
Now we determine the direction of stability of the invariant closed curve that
bifurcates from the positive fixed point. We follow the normal form theory
of Neimark-Sacker bifurcation as in [1]. Shift the fixed point to the origin by
taking
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Tn u,—-U*
S = W then equation (5.2.2) becomes,
W, Ly — L
o1 Blent XD bun t X5 _ x
Ynat | Tn (5.3.13)
“n+l Yn
Wp+1 Zn
Which can be written as
Yo =JY, +G(Y,) (5.3.14)
Tn
where G(Y) = 1B(Y,Y)+:C(YV, v, Y)+O(||Y||Y)  and Y, = g"
wn
Bl (Y7 Y) CYl (Y> Y7 Y)
B(Y,Y) = 8 and C(Y,Y,Y) = 8
0 0
where
! ‘ 5)
Z le=o(@su)
7,k=1
and oY)
Ci(x,y, TiYZ,
Y, 2 j;la D608, le=o(@jyn21)
-0 6 A+1
Bi(¢,¢) = Brie 5 (P21 + P11be) + (5 1) — g et (ﬁ n 1) 5 (G214 + Patho)
—6(6—A+1
Ci(d, ¢, n) = ((Bﬂ 1) )052%772 + (3 _f 1) (P21bam1 + d1bama + datPing2)

+(5+21)3(¢2¢2774 + Parhana + datbang)
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Let Jg* = e%qg* | JTp = e " p where ¢* and p are the eigenvectors corre-
sponding to the eigenvalues ¢ and e~ respectively .

Solving (J — M )g* = (J — e®I)g* =0

Jéi 0 —(B—A+1) 1 *

g1 ¢ —mr o Y «
1 —etbo 0 0 7 _0

10 *

0 1 —e'o 0 qs

0 0 1 —etfo qs

Let ¢f = 1, from the second equation

1—e¥%3 =0, soqs=e
From the third equation, ¢ — ¢? g3 = 0, then
672'090 — 6i90q§7 and q;: — 6722'90
From the fourth equation ¢ — e g} = 0 then
ds 4,
€—2i90 — ei@oqz’ and qj; — €—3i90
1
o—ifo
: *
We obtain ¢* ~ o—2if0
o310

Note that this choice of ¢* satisfies the first equation too. To have a non-zero
solution of the system (J — AI)g* = 0, the matrix (J — AI) must be singular,
that means |J — \I| = 0.

(B e\ sy B AL sy 1
U—AH—<B+1 e>(e3)+5+1@2) ﬁ+1_0

For the first equation
B w, B—A+1 o L sig
—— - ¢ —e =
B+1 B+1 g+1
Multiply by —e?* | then

( B 1'90) (_63i90> + w(emﬂo) o L =0

B+1 © B+1 +1
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Also, solving (J — X)Tp = (J —e ™ )Tp =0
B —if
—SGa e 1 , 0 P2
0 0 —e o 1 D3
Ea) 0 0 —e Pa
Let p; = 1, from the first equation
Fop — €™ 4 go =0, thus py = — 525 + e
From the third equation
—3 36 246
—e~Wop, + ;Jrol =0, thus p3 = %ﬁ
From the fourth equation
ﬁ — e %p, = 0, therefore p; = Eiol
Note that this choice of p satisfies the second equation too. We obtain
1
B —if
_m + e o
821'90
pr~ BT1
100
B+1
To normalize p and ¢*, we must have < p,q¢* >= 1, where < .,. > is the

standard scalar product in C3.

1
) ) —ifo
_ * _ 0 ﬁ 672190 67190 e
6731'00
/8 _ib 874i90 6741'90
=1+1- e "0 +
K B+1 B+1 B+1
, —4ify
n=2-— Lefwo + 26

pf+1 B+1
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So let ¢ = n~'¢*, where 7! = 1/n

The critical real eigenspace T corresponding to \; o is two-dimensional and is
spanned by {Re(q), Im(q)}. The real eigenspace T** corresponding to the real
eigenvalues of J is two-dimensional. Any vector € R* may be decomposed
as

rT=zq+z2q+y

where z € C!, and zq € T¢, y € T*. The complex variable z is a coordinate

on T° We have
z=<p,x>
y=2—<p,x>q—<p,x>q

In these coordinates, the map (5.3.14) takes the form

=2t <p,G2q+2q +y) >
y=Jy+Gzq+2q+y)— <p,G(zq+ 20+ y) > q— <p,G(zq+ 24+ y) > q

The previous system can be written in the form:

Z = ey + %GQOZQ + G11z§ + %G02§2 + %G21222+ < Glo,y > z+ < G(]l, Yy >z
g == Jy + %HQOZQ + HHZE + %H@ng + %H2122§

G20 =< paB( ) >aG11 =< po(qa Q) >,

q:q
Wh b -
o { Goa =< p, B(q,q) >, G2 =< p,C(¢,¢,7) >

Hyy = B(QaQ)_ <p,B(q,Q) > q— <ﬁaB(q>q) >q
Hll = B(Qag)_ <p7B(Q7Q) > q— <ﬁaB(Q7Q) > q
{ <G,y >=<p,Bla,y) >,< Gor,y >=<p, B(q,y) >
And the scalar product in C? is used.

From the center manifold theorem, there exists a center manifold W¢ which
can be approximated as

1 1
Y = V(Z, Z) = 5’&)2022 + wnZE + 511)0222

where < ¢,w;; >= 0. The vectors w;; € C* can be found from the linear
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equations .
Won = (6210013 — J)_ngg
wyy = (I3 - J)"'Hyy
Wop2 = (6_210013 — J)_1H02

So z can be expressed as

. 1 1
z = 61005 —+ §G2022 -+ GHZE + §G0222
1 .
+§(G21 +2<p,B(q,(I—=J)""Hn) >+ < p, B(q, (¥ — J) " Hy) >)2°2

Taking into account the identities

-1 _ 2106, o -1 _
(‘[ - J) q - 1 _ eieo Q’ (6 OI J) q - ei90 1q
and .
(]_ J)_17: 1 — (€2i001— J>_17: 67@90 _
0= 1—a 0= 51

We can express z using the map
) 1 )
~ 0 k=
z=e""z+ Z Fj!gka 2z’
k+1>2
where
G20 =< p7B<Q7Q> >, g =< p7B<Q7Cj> >, Go2 =< po<q_7 g) >
g21 =< D, C(qv q, (j) > +2 <p, B(Qa (I - J)ilB(qv 67)) >+
< p, B(q, (1 — J)"'B(q,q)) > +--- or equivalently
Z = (1 + ()]

where the real number 3(A*) = Re(d(A*)) that determines the direction of
bifurcation of a closed invariant curve, can be computed via

—1i6g 00 ,—2169
e " goq (1 —2e)e
A =R -R .
Theorem 5.3.4. If B(A*) < O(respectively, > 0), then the Neimark- Sacker
bifurcation at A = A* is supercritical(respectively, subcritical) and there exists
a unique invariant closed curve that bifurcates from the fixed point which is
asymptotically stable (respectively, unstable).

1 o 1 2
920911) - §|911| - Z|902|



6. Computer Simulation

To illustrate the analytical results found, let us consider the following partic-
ular cases of equation 4.2.1. Notice the birth of closed curve and its direction.

N=300; x(1)=50;x(2)=50; A=0.8; x(3)=50;B=0;
for B=0:0.001:0.2;

for n=3:1:0.3%N
x(n+1)=(Bex (n)+x (n—2)) / (Ax (n—1));
end

figure (1), hold on

for n=0.3«N:1:N
x(n+1)=B.xx(n)+x(n—2))/(Atx(n—1));
plot (B,x(n+1),".”,"MarkerSize ’ ,4)
axis ([0 0.5 0 3])

xlabel ('B’) ,ylabel ('x(n+1)’), grid on
end

end
hold off
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Fig. 6.1: Dynamical behavior

N=1000; x(1)=50;x(2)=50; B=0.33333; x(3)=50;A=0.5
for A=0.5

for n=3:1:0.3xN
x(n+1)=B.xx(n)+x(n—2))/(Atx(n—1));
x(n—2)

end

figure (2), hold on

for n=0.3xN:1:N
x(n+1)=B.xx(n)+x(n—2))/(A+x(n—1))

x(n)

plot (x(n),x(n—2),".", " MarkerSize ’,5)
xlabel (’x(n)’),ylabel (’x(n—2)"),grid on
end

end

hold off

Y
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Fig. 6.2: Phase portrait at bifurcation value

N=1000; x(1)=50;x(2)=50; A=0.5; x(3)=50;B=0:0.001: 1;
for B=0.5;

for n=3:1:0.02xN
x(n+1)=B.xx(n)+x(n—2))/(Atx(n—1));
x(n—2)

end

figure (3), hold on

for n=0.02«N:1:N
x(n+1)=B.xx(n)+x(n—2))/(Atx(n—1));
x(n)

plot (x(n),x(n—2),".", " MarkerSize ’,5)
xlabel (’x(n)’),ylabel (’x(n—2)"),grid on
end

end

hold off
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Fig. 6.3: Phase portrait away from bifurcation value

To illustrate the analytical results found for the fourth order rational
difference equation 5.2.1. Let us consider the following particular cases of
equation 5.2.1, and note the birth of closed curve and its direction.

for A=0.8:0.001:1;
for n=4:1:0.2xN
x(n+1)=(Bxx(n)+x(n
end

figure (1), hold on
for n=0.2«N:1:N
x(n4+1)=B.xx(n)+x(
plot (A,x(n+1),".7,
axis ([0.8 1 0 5])
xlabel (A”) , ylabel
end

end
hold off

N=300; x(1)=1;x(2)=1; B=1; x(3)=1; x(4)=1;

—3))/(Atx(n—-1))

n—3))/ (A+x(n—1))
"MarkerSize ' ,5)

('x(n+1)"),grid on
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Fig. 6.4: Dynamical behavior

N=1000; x(1)=1.7;x(2)=1.7; B=1; x(3)=1.7;x(4)=1.7;

for A=0.8889

for n=4:1:0.3xN
x(n+1)=B.xx(n)+x(n—3))/(Atx(n—1));
x(n—2)

end

figure (2), hold on

for n=0.3xN:1:N
x(n+1)=B.xx(n)+x(n—3))/(Atx(n—1));
x(n)

plot (x(n),x(n—3),".",” MarkerSize ' ,6)
xlabel (’x(n)’),ylabel ('x(n—3)"),grid
end

end
hold off

on
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Fig. 6.5: Phase portrait at bifurcation value

cle

N=1000; x(1)=1;x(2)=1; B=0.9; x(3)=1;x(4)=1;
for A=0.877

for n=4:1:0.3%N
x(n+1)=B.xx(n)+x(n—3))/(At+x(n—1));

x(n—2)

end

figure (3), hold on

for n=0.3%N:1:N
x(n+1)=B.xx(n)+x(n—-3))/(Atx(n—-1));

x(n)
plot (x(n),x(n—3),".", " MarkerSize ’ ,6)
xlabel (’x(n)’),ylabel ('x(n—3)"),grid on
end
end

hold off
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Fig. 6.6: Phase portrait away from bifurcation value
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